- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Agić, Heda (1)
-
Archilha, Nathaly Lopes (1)
-
Basei, Miguel_Angelo Stipp (1)
-
Becker-Kerber, Bruno (1)
-
Boag, Thomas_H (1)
-
Brocks, Jochen_J (1)
-
Canfield, Don_E (1)
-
Cheng, Meng (1)
-
Cole, Devon_B (1)
-
Crockford, Peter_W (1)
-
Cui, Huan (1)
-
Dahl, Tais_W (1)
-
Del_Mouro, Lucas (1)
-
Dewing, Keith (1)
-
Dornbos, Stephen_Q (1)
-
Emmings, Joseph_F (1)
-
Farrell, Una_C (1)
-
Gaines, Robert_R (1)
-
Gibson, Timothy_M (1)
-
Gill, Benjamin_C (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Rebuilding Earth’s first skeletal animals: the original morphology of Corumbella (Ediacaran, Brazil)The evolutionary onset of animal biomineralization in the late Ediacaran (ca555–538 Ma) is marked by the global appearance of enigmatic tubular fossils with unresolved phylogenetic relationships. Among these,Corumbella wernerifrom the Tamengo Formation (Corumbá Group, Brazil) has been variously interpreted as affiliated with cnidarians or bilaterians. Using synchrotron imaging and machine learning, we analysed new specimens ofC. wernerito reconstruct their original skeletal organization. Our findings reveal thatCorumbella’s tubes were originally conico-cylindrical. Large individuals ofCorumbella, including less compacted specimens, and compression experiments with modern annelid tubes all indicate that previous reconstructions of a quadrate outline and midline features were misled by taphonomic artefacts. We also show that the wall ofCorumbellais composed of a single layer of ring-shaped elements. Unlike the fourfold symmetry of scyphozoans or the complex cataphract-like structures of Cambrian bilaterians (e.g. halkieriids, tommotiids and wiwaxiids),Corumbelladisplays structural similarities with other late Ediacaran corumbellomorphs, such asCostatubus. These taxa exhibit a distinctive barrel-on-barrel tube construction, with modular elements stacked on each other rather than nested. Our findings redefineCorumbella’s morphology and phylogenetic affinities, contributing to a broader understanding of early biomineralizing metazoans and their ecological roles in the Ediacaran biosphere.more » « lessFree, publicly-accessible full text available May 1, 2026
-
Stockey, Richard_G; Cole, Devon_B; Farrell, Una_C; Agić, Heda; Boag, Thomas_H; Brocks, Jochen_J; Canfield, Don_E; Cheng, Meng; Crockford, Peter_W; Cui, Huan; et al (, Nature Geoscience)Abstract A geologically rapid Neoproterozoic oxygenation event is commonly linked to the appearance of marine animal groups in the fossil record. However, there is still debate about what evidence from the sedimentary geochemical record—if any—provides strong support for a persistent shift in surface oxygen immediately preceding the rise of animals. We present statistical learning analyses of a large dataset of geochemical data and associated geological context from the Neoproterozoic and Palaeozoic sedimentary record and then use Earth system modelling to link trends in redox-sensitive trace metal and organic carbon concentrations to the oxygenation of Earth’s oceans and atmosphere. We do not find evidence for the wholesale oxygenation of Earth’s oceans in the late Neoproterozoic era. We do, however, reconstruct a moderate long-term increase in atmospheric oxygen and marine productivity. These changes to the Earth system would have increased dissolved oxygen and food supply in shallow-water habitats during the broad interval of geologic time in which the major animal groups first radiated. This approach provides some of the most direct evidence for potential physiological drivers of the Cambrian radiation, while highlighting the importance of later Palaeozoic oxygenation in the evolution of the modern Earth system.more » « less
An official website of the United States government
